Sustainable Silage Corn Production, Opportunities and Necessities in NL

Dr. Mumtaz Cheema Associate Professor- Agronomy Boreal Ecosystem Research Initiative

GRENFELL CAMPUS

Sustainable silage corn production with dairy manure application

Variety	Variety Name	CHU	Company	Trait
Variety 1	Fusion RR ₂	2200	Brett Young	RR ₂
Variety 2	Yukon R	2150	Brett Young	RR_2
Variety 3	A4177G3 RIB	2175	Pride	VT3/RR
Variety 4	DKC-2317 RIB	2075	DEKLAB	
Variety 5	DKC26-28 RIB	2150	DEKLAB	GENVT2P

Phosphorus treatments

- P₀ Control P (no P application)
- P_1 High P manure (0.6 kg $P_2O_5/1000L$) @ 40 L plot⁻¹ 30000 Lha⁻¹
- P_2 Low P manure (0.3 kg $P_2O_5/1000L$) @ 40 L plot⁻¹ 30000 Lha-1
- P₃ Inorganic P (0-45-0) @ 110 Kg ha⁻¹

Parameters/Measurements

Leaf area and leaf chlorophyll contents LI-3000C, and SPAD 502 plus Chlorophyll Meter

In-situ root morphology with root scanner (CI 600)

Gas exchange rates/photosynthesis with LI-6400XT

Plant and soil sampling (P-uptake, root-shoot ratio, dry matter accumulation, soil sampling for root exudates)

Greenhouse gas emission (Chambers)

Biomass and plant height at final harvest

Determining crude protein, acid detergent fiber (ADF), neutral detergent fiber (NDF), non-structural carbohydrates (NSC), total digestible nutrients (TDN), and ash content with FT-NIR

Experiment details

Seeding date	June 4, 2015		
Seed rate	89980 seeds ha-1		
Plot size	3m×4.40m		
Plot separation	June 28, 2015		
N application (kg ha ⁻¹)	90.72		
P application (kg ha ⁻¹)	90.72		
Weed control	Glyphosate		
Harvest date	Oct. 16, 2015		
Experiment Design	RCBD factorial		

Silage Corn Seeding at Pynn's Brook Research Station

Manure application

Installation of acrylic tubes

Installation of acrylic tubes

High resolution root scanning with CI-600

Mapping roots with Rootsnap (CI-690)

W Rootshap: Version 1.5.2.20

Leaf area and chlorophyll measurements

Greenhouse gas sampling

Sustainable Farming Community through sustainable silage corn following dairy manure

- Why manure as phosphorus source?
- -Food scarcity
- -Water scarcity
- -Why NOT debate on global phosphorus security?

BECAUSE!

Soil, Plant & Feed Laboratory NL Department of Natural Resources 308 Brookfield Road, Provincial Agriculture Building P.O. Box 8700, St. John's NL, A1B 4J6 Telephone (709) 729-6738, Fax (709) 729-6734

MANURE ANALYTICAL REPORT

Submitted by:	Name: Dr Mumtaz Cheema Address: Grenfell College Tel: Tax: Email: mcheema@grenfell.mun.ca		
Date Received:	2014-10-02		
Date Reported:	2014-10-20		

Lab #: MC36

Sample ID: Oct 1st - # 2 Type of Manure: liquid dairy

Analysis Results (as received basis)		Nutrients Equivaler	cy kg/to	nne kg/1000 L	
Dry Matter (%)	9.6	Nitrogen (N)		1.1	
pH	7.0	Phosphate (P2O5)		0.6	
Total Nitrogen (%)	0.328	Potash (K ₂ O)		3.6	
Total Phosphorous (%)	0.057				
Total Potassium (%) 0.328		Note: 1 kg/tonne = 2 pounds/ton 1 kg/1000 L = 10 pounds/1000 gallons			
Total Calcium (%)	0.169			5	
Total Magnesium (%)	0.065	Interpretation: Ten (10) thousand litres of the manure would supply			
Total Iron (ppm)	58	11 kg N, 6 kg P_2O_5 and 36 kg K_2O for the 1 st year			
Total Manganese (ppm)	24	crop. Deduct fertilizer application rate accordingly.			
Total Copper (ppm)	4.3	Application Time	Incorpora	tion	
Total Zinc (ppm)	16	Late Summer	Injected		
Total Boron (ppm)	3	🗵 Early Fall	□ Incorporated (<24 hours)		
Total Sodium (ppm)	665	□ Late Fall/Winter	⊠ Incorporated within 3 days		
Soluble Salts (mS/cm)		Spring	Incorporated within 5 days		
		Summer	Not inco	orporated	

Tom Fagner Soil & Feed Laboratory Reviewed by: Y. Jiao

For further information on manure nutrient availability and manure nutrient management, contact Soil Fertility Specialist at 709-637-2685

Manure is a renewable resource

Phosphorus is very much important

Phosphorus (P) is vital to plant growth and is found in every living plant cell. It is involved in several key plant functions, including energy transfer, photosynthesis, transformation of sugars and starches, nutrient movement within the plant and transfer of genetic characteristics (DNA, RNA) from one generation to the next

- Stimulated root development
- Increased stalk and stem strength
- Improved flower formation and seed production
- More uniform and earlier crop maturity
- Increased nitrogen N-fixing capacity of legumes
- Improvements in crop quality
- Increased resistance to plant diseases.

Global phosphate depletion scenarios by different authors, indicating different depletion or peak years based on different assumptions[Studies depicted are Mohr & Evans 2013; Cordell et al. and Cordell & White 2011; GPRI 2010, Cordell et al. 2011; Walan 2013; Fixen 2009; Kauwenbergh 2010]

Global P consumption and reserves

Key phosphorus flows through the global food production and consumption system, indicating phosphorus usage, losses and recovery at each key stage of the process. Units are in Million tons/year.

* only a fraction of applied mineral P is taken up by crops in a given year, the balance comes from the soil stocks, either from natural soil P, or build up from previous years and decades of fertilizer application.

IFA, 2006

MEMORIAL

UNIVERSI

What are the key options?

To reduce the significant losses occur throughout the system from mining to field to fork, (mining five times the amount of phosphorus that humans are actually consuming in food) Alternative renewable phosphorus sources,

FNFFII

CAMPUS

- o manure (around 15 MT P),
- \circ human excreta (3 MT P) and
- o food residues (1.2 MT P),

A preferred scenario for meeting long-term global phosphorus demand: integrated demand management (efficiency) measures (blue) and supply-side (reuse) measures (red).

THANKS

Research Team

Dr. Nadeem (Post-doc) Dr. Unc (Soil Science-BERI) Dr. Galagedara (Hydrology and Water Resources-BERI) Dr. Thomas (Plant Science-BERI) Dr. Kavanagh (Scientist-Forestry & Agrifoods Agency)

